Depressed nNOS expression during spine transition in the developing hippocampus of FMR1 KO mice
نویسندگان
چکیده
Nitric oxide (NO), synthesized as needed by NO synthase (NOS), is involved in spinogenesis and synaptogenesis. Immature spine morphology is characteristic of fragile X syndrome (FXS). The objective of this research was to investigate and compare changes of postnatal neuronal NOS (nNOS) expression in the hippocampus of male fragile X mental retardation 1 gene knockout mice (FMR1 KO mice, the animal model of FXS) and male wild-type mice (WT) at postnatal day 7 (P7), P14, P21, and P28. nNOS mRNA levels were analyzed by real-time quantitative PCR (N = 4-7) and nNOS protein was estimated by Western blot (N = 3) and immunohistochemistry (N = 1). In the PCR assessment, primers 5'-GTGGCCATCGTGTCCTACCATAC-3' and 5'-GTTTCGAGGCAGGTGGAAGCTA-3' were used for the detection of nNOS and primers 5'-CCGTTTCTCCTGGCTCAGTTTA-3' and 5'-CCCCAATACCACATCATCCAT-3' were used for the detection of β-actin. Compared to the WT group, nNOS mRNA expression was significantly decreased in FMR1 KO mice at P21 (KO: 0.2857 ± 0.0150, WT: 0.5646 ± 0.0657; P < 0.05). Consistently, nNOS immunoreactivity also revealed reduced staining intensity at P21 in the FMR1 KO group. Western blot analysis validated the immunostaining results by demonstrating a significant reduction in nNOS protein levels in the FMR1 KO group compared to the WT group at P21 (KO: 0.3015 ± 0.0897, WT: 1.7542 ± 0.5455; P < 0.05). These results suggest that nNOS was involved in the postnatal development of the hippocampus in FXS and impaired NO production may retard spine maturation in FXS.
منابع مشابه
Altered Developmental Expression of the Astrocyte-Secreted Factors Hevin and SPARC in the Fragile X Mouse Model
Astrocyte dysfunction has been indicated in many neurodevelopmental disorders, including Fragile X Syndrome (FXS). FXS is caused by a deficiency in fragile X mental retardation protein (FMRP). FMRP regulates the translation of numerous mRNAs and its loss disturbs the composition of proteins important for dendritic spine and synapse development. Here, we investigated whether the astrocyte-derive...
متن کاملUiversity of California Santa Cruz Dendritic Spine Abnormalities in a Mouse Model of Fragile X Syndrome
........................................................................................vii Dedication......................................................................................viii Acknowledgements............................................................................ix Chapter 1: Introduction.......................................................................1 1.1 Backgroun...
متن کاملDistinctive behavioral and cellular responses to fluoxetine in the mouse model for Fragile X syndrome
Fluoxetine is used as a therapeutic agent for autism spectrum disorder (ASD), including Fragile X syndrome (FXS). The treatment often associates with disruptive behaviors such as agitation and disinhibited behaviors in FXS. To identify mechanisms that increase the risk to poor treatment outcome, we investigated the behavioral and cellular effects of fluoxetine on adult Fmr1 knockout (KO) mice, ...
متن کاملDelayed stabilization of dendritic spines in fragile X mice.
Fragile X syndrome (FXS) causes mental impairment and autism through transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein fragile X mental retardation protein (FMRP). Cortical pyramidal neurons in affected individuals and Fmr1 knock-out (KO) mice have an increased density of dendritic spines. The mutant mice also show defects in synaptic and experience-de...
متن کاملDelayed Development of Dendritic Spines in Fxr2 Knockout Mouse
Fragile X syndrome, the most common form of inherited mental retardation is caused by silencing of the Fmr1 (fragile x mental retardation-1) gene. Two mammalian homologues of Fmr1 have been identified: fragile X-related Protein 1 (Fxr1) and Protein 2Fxr2. Aberrations in dendritic spines of Fragile X syndrome patients and Fmr1 null mice implicate FMRP in synapse fo rmation and function. However,...
متن کامل